
Client: Performance
Livestock Analytics

Performance Health Team: DEC1708

Advisor: Daji Qiao (ECpE) 
Michael Rhodas, Jeff Murray, 
Jacob Johnson, Ken Kohl,
Rachel Hartman

Problem Statement:
Create a MVP web application that will help our clients 
record and monitor medical information for their 
animals and facilitate data-driven analysis and 
decision making from the PLA application to help our 
users make more informed economic decisions.

 Solution:
We have created a modern HTML5 web application with 
React component design, Bootstrap UI, and Firebase 
real-time data synchronization and authentication.

A Modern Vet Med Web Application

Intended Users & Uses:
 - Designed with farmers in mind

- Intuitive user interface and interaction scheme
- Real farm insights provided by the PLA team

- Built for usage in the field
- Bootstrap UI components support a great
experience on both web and mobile platforms
- Real-time data synchronization and reactive 
architecture make multitasking easy

- Data integrity as a top priority
- Firebase cloud storage and native APIs helps ensure 
secure and reliable data for PLA consumption

Functional Reqs:
A user can:
-Authenticate and register with the system
- Manage their “my medications” list
- Manage their “my groups” list
- Administer a medication to a group or 
subgroup
- View history of medication usage and 
associated metadata
- Define metadata for medication 
applications such as quantity per head, tag 
selection information, and user specific 
note strings

Technical Details:
- HTML5, designed for the modern web and all compliant devices 
- Javascript, fully ES6 compliant and built upon the latest JS standards means our 
application can immediately be integrated with countless web technologies
- React, component driven architecture makes project scaling vector much higher 
with minimized development effort moving forward
- Flux, reactive three-dimensional data synchronization via React's virtual DOM
- Bootstrap, component based user interface design with mobile adaptivity in mind 
makes for an intuitive, cohesive, and attractive user interface design
- Node.JS + NPM, package management and local server development made easy 
with the aid of Node, package management, and FaceBook’s create-react-app
- Firebase, cloud based data storage with the modern advancements of real-time 
database synchronization, built-in authentication support, and JSON syntax

Project Testing:
- Jest testing environment integration (image below)
- Tests primarily focused on ensuring proper rendering 
of key components and views

 Operating Environment:
- Website application environment

- Supports both web and mobile consumption via 
HTML5 and ES6 JavaScript compliant browsers

- Internet connection required
- However, application can be adapted for Firebase 
offline data store and cached synchronization

Concept Sketches & Finished Product: Product Architecture:

Non-Functional Reqs:
- Data must remain integrable when a user 
enters it manually and be consistent with 
automatically populated data
- Many users and accounts should be able 
to interact with database simultaneously
- Many instances of a user account should 
be able to interact with the system 
simultaneously with correct interleaving
- Database CRUD operations should never 
fail unsafely resulting in data loss
- User authentication and database 
operations should use encryption protocol

Original Design

Achieved
Design

Reactive Bootstrap 
components make 
data forms more 
effective, adaptive, 
and attractive.
Bootstrap also 
makes adaptive 
styling much easier 
for mobile 
consumption on 
tablets & phones.

React component 
design makes 
modular 
development much 
easier and allows 
assets to be reused 
throughout the 
application. This 
makes for faster 
development time 
and a more uniform 
user interface.

The UML compliant Use Case diagram above 
illustrates the user permissioning scheme and 
various associated use case stories for those 
levels of authentication. Each of the red parent 
components represents a core component view 
of within the react application design.

The context diagram below shows the 
technology stack for our application as well as 
the integrations between these technologies and 
the existing data consumers or producers.

The basic context 
diagram below 
illustrates our early 
grasp of a potential 
architecture for our 
application and it’s 
eventual evolution.

Jest testing 
environment 
integration allows 
coverage over reactive 
component rendering 
and view manipulations 
for more effective 
development. 


